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Evaluation of Input Data Representations of Website 

Fingerprinting Attack on Deep Learning Performance  
Mohammad Saidur Rahman 

Website fingerprinting (WF) is an attack by 

which an attacker can deanonymize a client 

of anonymity network such as Tor. A 

network level adversary who can observe 

network activates can perform this attack. 

The severity of this attack is so acute that 

making Tor secure in hardware level cannot 

ensure the user privacy [1]. Website 

fingerprinting attack is a machine learning 

classification problem. Previous research 

considered traditional machine learning 

(ML) techniques such as k-nearest neighbor 

(KNN), support vector machines (SVM), and 

random decision forests (RDF) for 

classification. Due to some basic limitations 

of those ML techniques such as manual 

feature selection, an attacker is inclined 

towards deep learning. Deep learning (DL) is 

a powerful way for feature selection. It can 

extract deep level features layer by layer. 

The major challenge of deep learning is to 

represent input data in the DL model. This 

project deals with this challenging issue. We 

experimented two input data 

representations. In both experiments, we 

are able to get more than 90% accuracy. We 

used stacked denoising autoencoder (SDAE) 

for our DL classification because of some 

obvious reasons such as extracting high-

level features and dimensionality reduction 

of input data [2]. 

  

With the emergence of the Internet, we are 

living in two worlds. One is the real world 

and the other one is the virtual world. The 

perception of connecting to people, 

gathering information, making ourselves 
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known to this universe is different in the 

virtual world than in real world. In the real 

world, we may not imagine knowing 

everybody and their personal information, 

but in the virtual world, it is possible. We are 

dependent on the Internet, and sometimes 

willingly or unwillingly we have to share our 

personal information over the Internet. This 

opens a door for privacy risk. At the same 

time, lots of efforts are being employed to 

enhance our privacy over the Internet. 

Tor is one of the most popular privacy 

enhancing technologies. Tor enables users 

to browse the Internet anonymously. It also 

gives the freedom to communicate to the 

world where it is restricted or limited such 

as China. However, we cannot say that Tor 

ensures our complete privacy on the 

Internet. It also has some flaws that can be 

exploited by attackers to deanonymize 

users. An attacker can deanonymize a client 

by just observing network traffic. This 

attack is called website fingerprinting. 

Website fingerprinting can be defined as the 

analysis of traffic to reveal which website a 

user is visiting. An attacker can 

deanonymize a user from that analysis 

using machine learning techniques such as 

k-nearest neighbor[3], support vector 

machine [4], and random decision forests 

[5]. Many research works have already been 

published proposing novel solutions to 

combat this attack [6-8]. But with the 

emergence of deep learning, an attacker can 

perform website fingerprinting attack with 

less effort and more efficiently. Only one 

research paper is published on website 

fingerprinting attack using deep learning 

that considered incoming and outgoing 

packets for input data [9]. But there are 

other ways to represent the input data. It 

will be efficient when an attacker can know 

which type of data representation she 

should feed to the model to train. This is 

one of the primary challenges of an attacker 

to perform website fingerprinting using 

deep learning. 
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This project deals with experimenting 

various ways to represent input data into 

the deep learning model. The objective is to 

find the best input data representation. Our 

default model is two-layer perceptron. And 

different activation functions will be used to 

see which one works best. Stacked 

denoising encoder will be used in designing 

deep neural network. We will take 

timestamp, outgoing packets, incoming 

packets and the combination of all to 

experiment as input format type. 

The contribution of this project will help 

future research on website fingerprinting 

using deep learning, as researchers will have 

a clear idea about data representation. After 

feeding data, deep neural network can find 

pattern automatically without manual 

effort. If the data representation is 

erroneous, we can never get good prediction 

or output. This project is dealing with fixing 

this crucial problem of appropriate data 

representation. 

 

Tor is a low-latency anonymity network. A 

Tor circuit consists of three nodes (guard 

node, middle node, and exit nodes) (Figure 

1). One node is only aware of the previous 

and next node of the circuit. Guard node 

only knows about the identity of the user 

and exit node only knows about the original 

TCP packets sent by the user [10]. Each node 

uses multilayered encryption. An 

eavesdropper, who can control the guard 

node and the exit node, can deanonymize 

the user. 

 

Figure 1: Tor Network [11]. 

We can achieve privacy by separating our 

activity from our identity. Our identity of 
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web browsing is our IP and our activities are 

the websites, we are visiting. Tor network 

ensures user privacy by keeping their 

identity anonymous. 

Website fingerprinting is a type of attack 

that enables a local, passive eavesdropper to 

know the destination of a client analyzing 

traffic [12]. We assume that an attacker can 

monitor the traffic between a client and 

guard node, and/or she controls the guard 

node. She can collect statistical data about 

the traffic such as the total number of 

incoming packets, the total number of 

outgoing packets, the timing of each packet, 

and bursts. Packet burst is the sequence of 

incoming and outgoing packets. She can 

apply machine learning techniques to 

classify websites using those traffic features 

and use trained machine learning classifiers 

to identify the client’s destination websites.  

Website fingerprinting attacker collects 

traffic of several websites of her interest. 

These websites are called monitored 

websites. After that, she feeds these traffic 

data based on traffic features such as 

incoming and outgoing packets, bursts, and 

timestamps to machine learning model to 

learn from this input. This process is called 

training. 

In the next step, she feeds her collected Tor 

traffic to the machine learning model to 

predict the new output. This process is 

called testing. 

A neural network or an artificial neural 

network is a modeling tool. It is inspired by 

human neural systems. ANN imitates the 

learning process of human brain neurons. 

This concept was first introduced by Warren 

McCulloch, a neurophysiologist, and a 

young mathematician, Walter Pitts in 1943 

[13]. They modeled a simple neural network 

with electrical circuits. An ANN estimate or 

approximate an unknown function that 

depends on inputs. 
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The neuron of an ANN takes inputs, and 

each input has the weight of their own 

(Figure 2). 

 

Figure 2: Simple Artificial Neural Network [14]. 

In Figure 2, F(X) is the neuron. A neuron 

consists of two functions: a summation 

function and an activation function. 

The summation function works as follows: 

𝑋 =  ∑ 𝑋𝑖𝑊𝑖

𝑛

𝑖=0

 

The activation function can be of different 

types such as sigmoid activation function, 

tanh activation function, binary threshold 

neuron, rectified linear neuron, and the 

stochastic binary neuron. Each activation 

functions works in a different way. For 

instance, sigmoid activation function takes 

logit function to activate the function. It is 

calculated as follows: 

𝑌 =
𝑒𝑋

1 + 𝑒𝑋
 

Deep neural network (DNN) is an artificial 

neural network that has multiple hidden 

layers. The complexity of a deep neural 

network is proportional to the number of 

hidden layers. It takes non-linear inputs and 

performs a complex computational task to 

predict the output. 

Deep learning emerged to study the use of 

the DNNs for various applications. The 

structure and learning behavior of DNNs are 

different than general ANN, and other ML 

techniques. Specifically, Deep learning (DL) 

technologies are based on learning 

representations of data by means of 

effective algorithms for feature learning and 

feature extraction. One of the significant 
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advantages of deep learning (DL) is its 

ability to learn feature representations from 

unlabeled data. 

For this project, stacked denoising 

autoencoders will be used for designing our 

experimental deep neural network (Figure 

3).  Autoencoding means to reduce the 

dimensions of the input data. Stacked 

autoencoder means stacking several 

autoencoders on each other and training 

them one by one.  

 

Figure 3: Stacked Encoder. 

When we add noise to our input vector, the 

stacked autoencoder (SAE) becomes the 

stacked denoising autoencoder (SDAE). We 

add noise in our input vector in the 

following way (Figure 4). 

 

Figure 4: Process of Noise Adding in Input Vector. 

After adding noise, the stacked autoencoder 

becomes stacked denoising autoencoder as 

follows (Figure 5): 

 

Figure 5: Stacked Denoising Autoencoder. 

In 2009, Herrmann et al. [15] developed a 

website fingerprinting attack in which they 

considered IP packet size for their classifier. 

Panchenko et al. designed a new attack 

adding more features: packet volume, 

packet direction, and timing [12]. They used 

support vector machines as their classifier. 
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SVM was again used by Cai et al. who 

proposed a new attack based on a new 

representation of the classification 

instances [16]. Their SVM was using the 

Damerau-Levenshtein edit distance and 

used the SVM kernel trick to pre-compute 

distance between the traces. This same 

attack was improved by Wang and Goldberg 

[17]. In 2014, Wang et al. proposed a new 

attack based on a k-Nearest Neighbor 

classifier on a large feature set with weight 

adjustment [3]. 

Hayes et al. use a novel feature extraction 

and selection method: they use random 

forests to extract robust fingerprints of 

webpages [18]. In 2016, Panchenko et al. 

proposed a new attack improving features 

based on packet size, packet ordering, and 

packet direction [19]. They used the concept 

of Wang et al. to develop their attack using 

k-nearest neighbor (K-NN) classifier. 

To the best our knowledge, only one paper 

has published so far that investigated the 

deep learning effectiveness on traffic 

analysis [9]. In this attack, their input data 

representation is based on incoming and 

outgoing packet traces. They got 88% of 

accuracy using deep learning without any 

manual selection of packet features. 

However, they only considered one type of 

data representation omitting an important 

feature: timing of the packets. This project 

will experiment different input data 

representations to find out which one 

performs best. 

The objective of this project is to find out 

the best input data representation to feed 

into the deep neural network for website 

fingerprinting attack. The initial plan of this 

project was to group the tasks into two 

broad categories as follows: 
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Step I 

This project will try to evaluate three 

scenarios of data representation: 

a. Both incoming and outgoing packets 

b.  

i. Incoming packets only 

ii. Outgoing packets only 

iii. Concatenating I and II 

c. Timestamp, incoming packets, and 

outgoing packets 

Step II 

a. Designing our deep neural network 

in SDAE mechanisms. 

b. Experimenting with different 

activation function such as Sigmoid 

and Stochastic binary neuron (SBN) 

The plan of the project work is shown in 

Figure 6. 

 

 

Figure 6: Plan of this Project. 

However, at the time of our experiment, we 

had to modify our plan. Mainly, we 

completed our project considering two 

input data representations. We could not 

find any good way to represent timing of the 

packets. We tried to visualize the timing of 

the packets. 
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Figure 7: Concept of Input Data Representation. 

Our major experiments are based on two 

input data representations (illustrated 

below). 

Our both experiments are based on one 

major concept of input data representation, 

which is splitting outgoing and incoming 

packets and then combining these two into 

one (Figure 7). 

In our basic instance, outgoing packets are 

denoted by +1 and incoming packets are 

denoted by -1. After that we halve the total 

length of the cell. In our spit instance, when 

we are considering outgoing packets, we put 

+1 for outgoing packets and we put 0 for 

incoming packets in that instance. When we 

are considering incoming packets, we put +1 

for incoming packets and we put 0 for 

outgoing packets in that instance. Finally, 

we merge two instance together. 

 

Figure 8: Appending Zero. 

In our first experiment, we compare actual 

number of lines in a cell. If it is greater than 

or equal to the length, we put 1.0 for 

outgoing packets and 1.0 for incoming 

packets in our split instance. If the actual 

number of lines in a cell is less than the 
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length, we put 1.0 for outgoing packets and 

1.0 for incoming packets in our split 

instance for the lines exist in the cell. We 

pad the rest of the lines by 0. 

Experiment in this input data 

representation was conducted with two, 

three and four hidden layers. We also saw 

the impact of changing the length of the cell. 

We also observed the impact of filtered 

length. 

This experiment is similar to the experiment 

one with an exception. Instead of padding 

empty lines with 0, we copied the outgoing 

and incoming split instance to fill out the 

length of the cell. 

 

Figure 9: Copied Instance. 

Initially, we could not figure out any way to 

represent timing of packets direction. After 

that, we decided to find if any pattern in 

timing of packets direction exist. We tried to 

see some graphs of each websites and 

compare them. In this experiment, we took 

ten instances of each website. We took six 

websites for this experiment. 

We used Linux (Ubuntu) environment for 

our experiment. We used GPU for faster 

computation. We used Theano deep 

learning library. Stacked denoising 

autoencoder is our deep learning classifier. 

We used the data of Wang et al. [3]. We used 

the codes of Theano tutorial [20] and 

modified the codes in accordance to our 

requirements. 
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Figure 10: First Phase of the Experiment. 

The default input layer length is 5000, the 

number of training, validation and testing 

input instances are 58, 14 and 18, and the 

number of length for filtering packets is 

200. In the default configuration, the 

accuracy is 84.52%. Each of the experiment 

was run five times and took the average of 

the accuracy. We can see from Figure 10, 

that increasing the number of training 

instances gives us better accuracy. 

In two hidden layers, we got at best 91.72% 

accuracy with 4000 input layer length; and 

with 72 training, 1 validation, and 17 testing 

instances; and the length of the packets to 

be filtered is 500 (Figure 11). 

 

Figure 11: Best Accuracy in Two Hidden Layers. 

However, we got the best accuracy in this 

input data representation with three hidden 

layers (Figure 12). 

 

Figure 12: Best Accuracy in Three Hidden Layers. 

In our second experiment, we got the best 

accuracy 90.77 with four hidden layers; and 

75 training, 1 validation, and 14 testing 

instances; and the length of the packets to 

be filtered is 500 (Figure 13). 

 

Figure 13: Best Accuracy in Four Hidden Layers. 

  



CSEC 759.02 Internet Security & Privacy; 2165 Spring 2017; Project Report (1-19)  

 

 

12 

 

Figure 14: Visualization in Radar Graph. 

 

 

Figure 15: Visualization in Clustered Column Graph. 
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From all our experiment, we came to know 

several important issues. Firstly, the length 

of input layer is important. We cannot fix 

the length of each hidden layer units 

arbitrary. We can see from our experiment, 

when we maintain some proportion, the 

deep learning classifier gives us better 

accuracy. We also observed that the number 

of training instances matters a lot. This is 

obvious because we know that deep learning 

requires lot of data for training. In our 

experiment with timing of packets 

direction, we could not find any pattern. 

Even we tried some visualization (Figure 14 

and Figure 15), but we could not see any 

pattern. However, we can see that, the best 

input data representation is representation 

of experiment one. We plan to use this 

representation in our future work. 

We think the major limitation of this project 

is that we had to change the number of 

training, validation and testing instances 

from standard ratio. We got the best 

accuracy in 72 training instances, 1 

validation instance, and 17 testing 

instances. One validation instance does not 

give us best validation. It is not even 

standard in machine learning. We did not 

have any error checking such as cross-

validation. 

We are going to work in future to overcome 

this limitation increasing the number of 

data. We have already collected big data set 

for our new experiments. We used Theano 

library for our deep learning model. We are 

planning to use Pylearn library because Abe 

& Goto [9] used this library. As we want to 

compare our results with them, we need to 

use the same library they used. We will go in 
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depth literature to find if there is any 

proportional relationship between the 

lengths of each two layers such as input 

layer to first hidden layer, and first hidden 

layer to second hidden layer, and so on. We 

will try to experiment timing of packets 

direction in recurrent neural network (RNN) 

because RNN considers timing exclusively. 

We will also experiment our work in 

convolutional neural network. We will 

experiment the effectiveness of our attack 

against the defenses of website 

fingerprinting.  

In this project, we tried to experiment two 

input data representations. Initially we 

planned use timing of packets direction in 

our experiment, but we could not find any 

way for that. We introduced a new concept 

of input data representation that is splitting 

the basic instance into two instances and 

then merging. We experimented this 

concept in two ways. One is padding with 

zero (Figure 8) and another is copying the 

instances (Figure 9). We tried different 

hidden layers in our experiment. We got at 

best 91.89% accuracy in first input data 

representation (experiment one) with three 

hidden layers. 
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express my special gratitude to Payap 

Sirinam for his continuous support to 

develop concepts of this project, conduct 
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Each configuration is experimented five times. 

Config. 

No. 
Input Layer Length 

Hidden Layer Input Instance 

Filter Accuracy (%) 

1 2 3 4 Training Validation Testing 

1 5000 1500 1000   58 14 18 200 84.52 

2 5000 1500 1000   72 1 17 200 87.97 

3 5000 1500 1000   81 1 8 200 89.97 

4 4000 1500 1000   58 14 18 200 86.41 

5 4000 1500 1000   72 1 17 200 90.19 

6 4000 1500 1000   81 1 8 200 91.03 

7 3000 1500 1000   58 14 18 200 84.93 

8 3000 1500 1000   72 1 17 200 89.26 

9 3000 1500 1000   81 1 8 200 89.81 

10 4000 1500 1000   58 14 18 500 87.05 

11 4000 1500 1000   72 1 17 500 91.72 

12 4000 1500 1000   81 1 8 500 91.22 

13 5000 1500 1000   58 14 18 500 85.98 

14 5000 1500 1000   72 1 17 500 90.10 

15 5000 1500 1000   81 1 8 500 90.01 

16 5000 2000 1000   72 1 17 500 85.98 

17 5000 1500 750   72 1 17 500 86.06 

18 4000 2000 1000   72 1 17 500 86.67 

19 4000 1500 750   72 1 17 500 86.60 
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20 5000 2000 1500 1000  58 14 18 200 85.67 

21 5000 2000 1500 1000  72 1 17 200 88.97 

22 5000 2000 1500 1000  58 14 18 500 86.29 

23 5000 2000 1500 1000  72 1 17 500 90.43 

24 5000 1500 750 500  72 1 17 500 89.69 

25 5000 1500 1000 500  72 1 17 500 89.53 

26 5000 2500 1500 500  72 1 17 500 90.51 

27 5000 2000 1500 500  72 1 17 500 90.18 

28 4000 2500 1500 500  72 1 17 500 91.48 

29 4000 2000 1500 500  72 1 17 500 91.89 

30 4000 1500 750 500  72 1 17 500 90.79 

31 5000 2500 1500 1000 500 72 1 17 500 90.31 

32 5000 2000 1500 1000 500 72 1 17 500 90.48 

33 5000 1500 1000 750 500 72 1 17 500 88.81 

34 4000 2500 1500 1000 500 72 1 17 500 91.67 

35 4000 2000 1500 1000 500 72 1 17 500 91.56 

36 4000 1500 1000 750 500 72 1 17 500 91.18 
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Each configuration is experimented five times. 

Config. 

No. 
Input Layer Length 

Hidden Layer Input Instance 
Filter Accuracy (%) 

1 2 3 4 Training Validation Testing 

1 5000 1500 1000 500 250 58 14 18 200 80.06 

2 5000 1500 1000 500 250 58 14 18 50 65.6 

3 3000 1500 1000 500 250 58 14 18 250 80.80 

4 3000 1250 1000 750 600 58 14 18 500 84.33 

5 4000 1500 750 500 350 58 14 18 500 85.13 

6 4000 1500 1000 750 500 58 14 18 500 86.23 

7 4000 1500 1000 750 500 65 5 20 500 88.23 

8 4000 1500 1000 750 500 70 5 15 500 88.86 

9 4000 1500 1000 750 500 75 1 14 500 90.34 

10 3600 1500 1000 750 500 75 1 14 500 90.77 

  

 


